Hochschule München FK 03	Prüfung Wintersemester 2017/18 Grundlagen der Elektrotechnik Dauer: 60 Minuten		M. Kortstock, F. Palme
Zugelassene Hilfsmittel:	MatrNr.:	Name, Vorname:	
Kenie	Hörsaal:	Unterschrift:	

A	1	2	3	Σ	N
P					

Aufgabe 1: Filterschaltung (ca. 20 Punkte)

Die in Abb. 1 gezeigte Filterschaltung wird an einer Wechselspannungsquelle \underline{U} der Frequenz f betrieben und der komplexe Eingangsstrom \underline{I}_e mit Hilfe eines idealen Amperemeters gemessen.

$$\underline{U} = U \cdot e^{j\phi_u} = 8 \text{ V}$$

(komplexer Effektivwert)
Betriebsfrequenz: f variabel

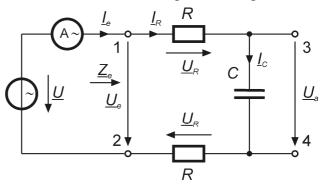
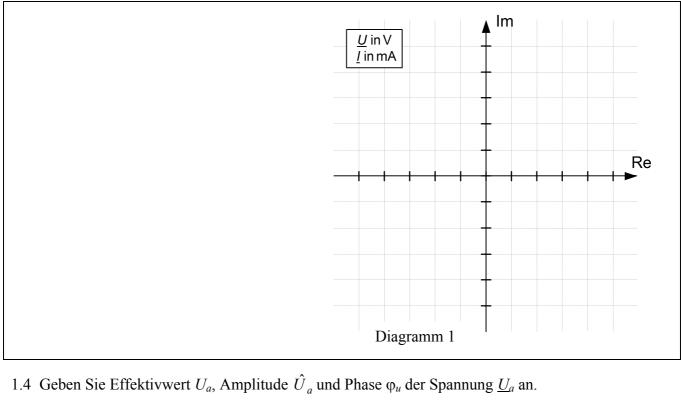


Abb. 1: Filterschaltung

Zur Ermittlung der Filtercharakteristik wird $\omega = 2\pi f$ so eingestellt dass gilt: $\text{Re}\{\underline{I}_e\} = \text{Im}\{\underline{I}_e\}$ Bei $\omega_g = 10^4 \text{ s}^{-1}$ wird auf diese Weise ein Eingangsstrom $\underline{I}_e = 2 (1+j) \text{ mA}$ bestimmt.


1.1 Berechnen Sie die dabei auftretende Eingangsimpedanz \underline{Z}_e allgemein und zahlenmäßig.

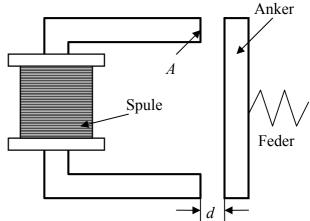
Ersatzwert: $\underline{Z}_e = 4(1-j) k\Omega$

1.2 Geben Sie die Eingangsimpedanz \underline{Z}_e allgemein als Funktion der Bauteile an. Berechnen Sie daraus

R und C unter Verwendung des in 1.1 bestimmten \underline{Z}_e .

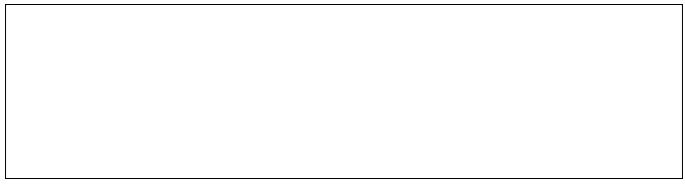
1.3 Berechnen Sie die komplexen Spannungen \underline{U}_R und \underline{U}_a . Zeichnen Sie alle auftretenden Spannungen \underline{U}_e , \underline{U}_R , \underline{U}_a und den Eingangsstrom \underline{I}_e als Effektivwertzeiger in Diagramm 1 ein (Achsen geeignet skalieren). **Ersatzwert**: $\underline{U}_a = 2(1-j) \text{ V}$

1.5 Berechnen Sie das komplexe Übertragungsverhältnis $\underline{H}(\omega) = \underline{U}_a/\underline{U}_e$ allgemein als Funktion der Kreisfrequenz ω (Ausdruck *nicht* vereinfachen). Wie groß ist der Betrag $H(\omega = \omega_g)$ zahlenmäßig?

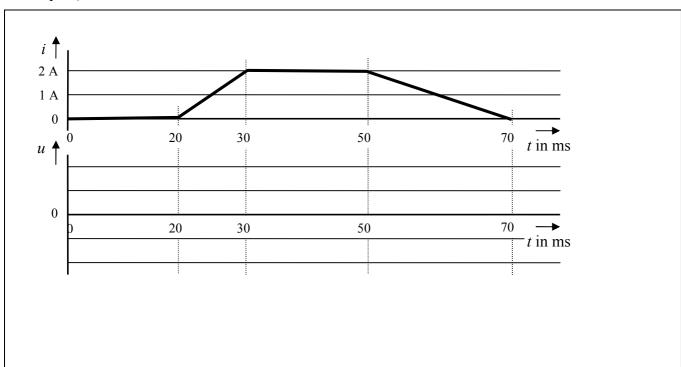

1.6 Geben Sie $H(\omega)$ für sehr niedrige ($\omega \to 0$, Gleichstrom) und sehr hohe Kreisfrequenzen ($\omega \to \infty$) an. Erläutern Sie damit die Wirkung des Filters, indem Sie in der Schaltung die sich jeweils ergebenden Blindwiderstände ansetzen.

Aufgabe 2: Türöffner (ca. 18 Punkte)

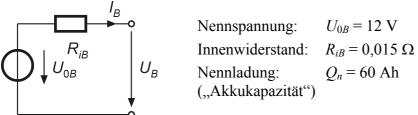
In einem elektromagnetischen Türöffner gemäß nebenstehender Abbildung soll die Spule dimensioniert werden. Der Anker muss beim Schließen gegen eine Federkraft F = 10 N angezogen werden.


Der Anker hat im Ruhezustand einen Abstand d = 2.5 mm bei einer Fläche (Eisenquerschnitt) von A = 12.5 cm².

Der magnetische Widerstand des Eisenkerns kann vernachlässigt werden $(\mu_r \rightarrow \infty)$.


2.1	Zeichnen Sie das komplette magnetische Ersatzschaltbild und zeichnen Sie eine Magnetfeldlinie in obige Abbildung ein. Warum ist die Richtung der Feldlinie hier bedeutungslos?
2.2	Bestimmen Sie den magnetischen Widerstand $R_{m,ges}$ der gesamten Anordnung im gezeichneten Ruhezustand. Geben Sie zuerst die allgemeine Gleichung für den magnetischen Widerstand an. Hinweis : Für einen normierten Luftspalt mit einer Fläche $A = 1$ cm ² und einem Abstand $d = 1$ mm ergibt sich ein Wert von $R_m = 8 \cdot 10^6 \text{H}^{-1}$. Ersatzwert : $R_{m,ges} = 4 \cdot 10^6 \text{H}^{-1}$
2.3	Welche magnetische Flussdichte B ist nötig, um den Anker gegen die Federkraft F anzuziehen? Hinweis : Die magnetische Kraft eines Luftspaltes errechnet sich allgemein nach der Gleichung $F = (B^2A)/(2\mu_0)$ mit $\mu_0 = 1,25\cdot 10^{-6}$ Vs/Am (Ersatzwert).

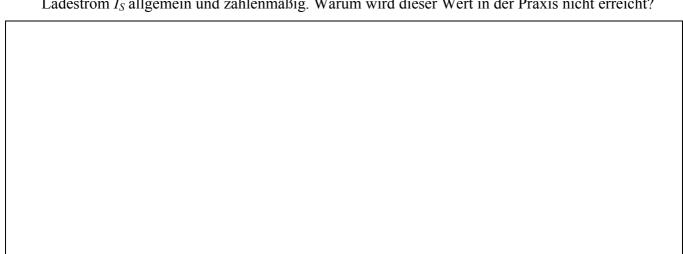
2.4 Welche minimale Windungszahl N muss die Spule mindestens haben, damit bei einem Strom I=2 A die magnetische Flussdichte B=0,2 T, die ein sicheres Anziehen des Ankers gewährleistet, erreicht wird?


2.5 Welche Induktivität L hat die Spule im Ruhezustand des Ankers, wenn die Windungszahl N=320 beträgt? **Ersatzwert**: L=40 mH

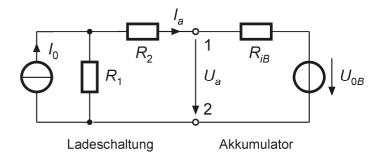
- 2.6 Wie lautet die allgemeine Gleichung für Spannung, Strom und Induktivität an einer Spule?
- 2.7 Skizzieren Sie die Spannung an der Induktivität gemäß 2.5 quantitativ für den angegebenen Stromverlauf. Dabei kann der Ohmsche Widerstand der Wicklung vernachlässigt werden (ideale Spule).

Aufgabe 3: Bleiakkumulator (ca. 23 Punkte)

Untersucht wird ein Fahrzeug-Bleiakkumulator ("Starterbatterie"), der im jeweiligen Arbeitspunkt vereinfacht als lineare Spannungsquelle betrachtet werden kann mit folgenden Kenndaten:



(,,Akkukapazıtät")
3.1 Berechnen Sie den Kurzschlussstrom I_k und die nominal gespeicherte Energie W_n des Akkus.
3.2 Bestimmen Sie die maximale Leistung P_{max} allgemein und zahlenmäßig, die dieser Akku zum Anlassen bereitstellen kann. Wie groß sind dabei der Anlasserstrom I_B und der Wirkungsgrad?
Der Anlasser ist über ein 0,7 m langes Kupferkabel mit Querschnitt $A = 25 \text{ mm}^2$ angeschlossen, der Rückleiterwiderstand über die Fahrzeugmasse soll vernachlässigt werden. Während des $t_B = 6$ s dauernden Versuchs den Motor zu starten fließt ein mittlerer Strom $I_B = 300 \text{ A}$.
3.3 Berechnen Sie den Leitungswiderstand R_L , die dabei im Kabel auftretende Stromdichte S und die Verlustleistung P . Hinweis : 1 km Kupferleitung mit 2,5 mm ² hat $R_L = 7 \Omega$


3.4 Welche Ladung Q_B ist für einen Startversuch erforderlich? Wie oft können Sie den Start näherungsweise wiederholen bis dem Akku 10 % seiner Nennladung Q_n entnommen ist?

Da der Motor nicht anspringt erhalten Sie Starthilfe, indem ein geladener Akku mit $U_{0S} = 13,5$ V, $R_{iS} = 0,01$ Ω parallel zu Ihrem Akku mit mittlerweile $U_{0B} = 11,5$ V, $R_{iB} = 0,03$ Ω geschaltet wird.

3.5 Zeichnen Sie den entstehenden Stromkreis (ohne Anlasser) und stellen Sie die Maschengleichung allgemein auf. Berechnen Sie damit den unmittelbar nach Anklemmen in Ihren Akku fließenden Ladestrom *I*_S allgemein und zahlenmäßig. Warum wird dieser Wert in der Praxis nicht erreicht?

Um Ihren Akku wieder vollständig aufzuladen wird nebenstehende Schaltung verwendet. Hierbei kann der Akku-Innenwiderstand vernachlässigt werden: $R_{iB} \rightarrow 0 \Omega$

3.6 Zeichnen Sie das **Spannungsquellen**-Ersatzschaltbild (ESB) der Schaltung **links der Ladeklemmen 1–2** mit angeschlossenem Akku und berechnen Sie die Kenngrößen dieses ESB allgemein.

Nun ist gegebenen: $U_0 = 45 \text{ V}, R_i = 5 \Omega$

3.7 Skizzieren Sie das Strom-Spannungsdiagramm $I_a(U_a)$ dieser Ladeschaltung quantitativ. Bestimmen Sie den sich für $U_a = 15$ V ergebenden Ladestrom I_a (in Diagramm einzeichnen).